If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+13x=0
a = 12; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·12·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*12}=\frac{-26}{24} =-1+1/12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*12}=\frac{0}{24} =0 $
| -49=7a-35 | | 6s-4=(2+1/4) | | 2(x-3)(2x+5)(3)=8 | | 40+5x=12x | | v/6-4=-7 | | 6x+5x=84 | | 39+84+3o=180 | | 2(x-6)(2x+5)=8 | | 4=84/v | | -32=-8(u+5) | | 18x+6=16×+6 | | 16.35x=39.75 | | 35+5x=12x | | 5(x+4)=2(x+5) | | 5x+3x+38=180 | | 10.3+2.3h=-9.2 | | 32=h | | (x-3)(2x+5)=15 | | g+7/2=10 | | -3(2y+3)-1=-4(y+6)=2y | | 60-5x=50-3x | | 6q-7=8+3q | | 7n-4=5n-6 | | 54(4x-8)=(5x-19) | | -126=2(-8p-7) | | 116+52+o=180 | | 0-16+5x=4(3x+7) | | x+(-13)=-16 | | 60-3x=50-5x | | 1000(9x-10)=50(624+100x) | | n/5+-11=-14 | | -r+7(3r+3)=141 |